

Ecological Resilience of Mediterranean Forests to Climate Change and Wildfires

Ministero dell'Università e della Ricerca

NATIONAL BIODIVERSITY FUTURE CENTER

Climate Change Impact on Biodiversity Patterns | Lecce, Italy, 21-22 February 2024

Plant traits and fire

- Climatic factors (wind, temperature, dryness..) are the most commonly studied
- Role of plant species characteristics: ecosystem flammability and fuel load are the most evident and wellstudied aspects of plant influence on fire regime.
- Not much attention has been devoted to the effects of plant traits associated with <u>fire adaptation and post-fire</u> <u>response</u> on fire and ecosystems

Resilience of Mediterranean Forest: fires and land abandonment

Oak forests (broad leaved, sclerophyllous forest)

Catastrophic shifts in Mediterranean forests?

Can fires and aridity maintain the open shrubland as an alternative state to the oak forest?

A modeling approach: ingredients

1- A classical model for competition and succession (Tilman 1994)

2-Fire:

different functional types (seeders/resprouters; flammability)
 stochastic fire occurrence (with vegetation-fire feedback)

Calibration with data from: old-fields (no fire) or from sites with repeated fires

Baudena et al, 2020, New Phytologist

Oak forest if no fire...

Results

Can fire lead to a state shift?

In the long run: it seems it can't.. oak forest recovers and dominates

What about climate change?

Aridity increase affects growth and flammability In the model (and in reality): Directly:

- Decreases germination and establishment (competitive ability) especially of late successional species;
- Diminishes resprouting ability
- Indirect effect: increases the chance of fire

Aridity-1: decreasing oak colonization ability

Average plant cover

Aridity-1: decreasing oak colonization ability

Average plant cover

VOL. 202, NO. 3 THE AMERICAN NATURALIST SEPTEMBER 2023

E-ARTICLE

Fire Responses Shape Plant Communities in a Minimal Model for Fire Ecosystems across the World

Marta Magnani,^{1,2,3,4,*} Rubén Díaz-Sierra,^{5,6} Luke Sweeney,⁷ Antonello Provenzale,^{1,4} and Mara Baudena^{3,4,5,8}

Post-fire management: Promoting resilient landscapes Integrated and adaptive management

uel control₊ Ecosystem restoration

Santana et al, in prep

Future scenarios

- 7 Treatments: management combinations of
- Clearings for reducing seeder species
 -> Can be repeated every 10 yr
- planting resprouting species

- 3 climate scenarios
- Historical climate (calibrated with past data)
- Intermediate aridity increase
- Extreme aridity increase

Aridity effects: decreases competitive ability and resprouting, increases flammability

Santana et al, in prep

Control	Plantation	Clearing	Clearing +Plantation	2 Clearing +Plantation	Rec Clearing +Plantation	Rec Clearing

Extreme CC

<u>Results</u>

Santana et al, in prep

<u>Results</u>

<u>Results</u>

Santana et al, in prep

Summary and conclusions

- Climate change can lead Mediterranean forest to shift to shrublands by reducing the post-fire response (not only on increasing fire conditions and flammability)
- Importance of including plant fire-responses when modelling fire ecosystems under climate-change scenarios.
- Adaptive management combining fuel reduction and restoration can promote resprouter-dominated ecosystems
- In the long term, combination of planting resprouting species with recurrent clearings is the most effective strategy
- Future scenarios of climate change will reduce management effectiveness, and more efforts will be needed to achieve targets

"WiFin": Plant traits of native and invasive species in fire ecosystems across the world

V. M. Santana, M. J. Baeza, S. Bautista, L. Hemerik, M.B. Eppinga, A. G. Mayor, Moghli, A., A. Valdecantos, R. Vallejo, A. Vasques, M. Rietkerk,

Marta Magnani, Rubén Diaz-Sierra, Antonello Provenzale, Luke Sweeney

Donatella D'Onofrio, Jost von Hardenberg

LifeWatch ERIC 2024 Thematic Service Workshop Series

Thank you for your attention! Any questions?

Taxonomy | Brussels, Belgium, 30 January 2024

Climate Change Impact on Biodiversity Patterns | Lecce, Italy, 21-22 February 2024

Animal Movement and Biologging | Ostend, Belgium, 22 March 2024

Biogeography | Bologna, Italy, 4-5 April 2024

Biodiversity Observatory Automation | Ljubljana, Slovenia, 11 April 2024

Habitat Mapping | Aveiro, Portugal, 3 May 2024

